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1 Why I was drawn in the study of randomness
testing: introduction

The study of randomness testing discussed in this chapter was motivated by at-
tempts to assess the quality of different random number generators which have
widespread use in encryption, scientific and applied computing, information
transmission, engineering, and finance. The evaluation of the random nature of
outputs produced by various generators has became vital for the communica-
tions and banking industries where digital signatures and key management are
crucial for information processing and computer security.

A number of classical empirical tests of randomness are reviewed in Knuth
(1998). However, most of these tests may pass patently nonrandom sequences.
The popular battery of tests for randomness, Diehard (Marsaglia 1996), de-
mands fairly long strings (224 bits). A commercial product, called CRYPT-X,
(Gustafson et al. 1994) includes some of tests for randomness. L’Ecuyer and
Simard (2007) provide a suite of tests for the uniform (continuous) distribution.

The Computer Security Division of the National Institute of Standards and
Technology (NIST) initiated a study to assess the quality of different random
number generators. The goal was to develop a novel battery of stringent pro-
cedures. The resulting suite (Rukhin et al, 2000) was successfully applied to
pseudo-random binary sequences produced by current generators. This collec-
tion of tests was not designed to identify the best possible generator, but rather
to provide a user with a characteristic that allows one to make an informed
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decision about the source. The key selection criteria for inclusion in the suite
were that the test states its result as a numerical value (P -value) indicating “the
degree of randomness”, that the mathematics behind the test be applicable in
the finite sequence domain, and that there be no duplication among the tests in
the suite. All of the tests are applicable for a wide range of binary strings size
and thus exhibit considerable flexibility. While an attempt was made to employ
only procedures which are optimal from the point of view of statistical theory,
this concern was secondary to practical considerations.

In the next sections we review some of the tests designed for this purpose.
Most of them are based on known results of probability theory and information
theory, a few of these procedures are new. Before doing this, however, we discuss
one of the first applications of the test suite.

1.1 Testing block ciphers: statistical theory and common
sense

One application of the tests of randomness is block ciphers. These ciphers
are widely used in cryptographic applications. Ten years ago NIST carried
out a competition for the development of the “Advanced Encryption Standard
(AES)”. Its goal was to find a new block cipher which could be used as a
standard. One of the requirements was that its output sequence should look
like a random string even when the input is not random.

Indeed, one of the basic tests for the fifteen AES candidates was “Random-
ness Testing of the AES Candidate Algorithms,” whose aim was to evaluate
these candidates by their performance as random number generators (Soto and
Bassham, 2001). The winner of the competition, the Rijndael algorithm, as well
as other finalists, Mars, RC6, Serpent and Twofish, were used in the experiment
involving randomness testing of their bit output by using statistical procedures
in the NIST test suite.

To measure their performance, a numerical characteristic of the degree of
randomness was required. For a given test, such a characteristic is provided
by the P-value which quantifies the likelihood of a particular, observed data
sequence under the randomness assumption. We discuss the P-values, their in-
terpretation, and the difficulties of assigning them in section 1.2. Meantime, it
should be mentioned that although different from the probability of the ran-
domness hypothesis being true, P-values bear the same interpretation: small
P-values indicate a disagreement between the hypothesis and the observed data.
Although larger P-values do not imply validity of the hypothesis at hand, when
a string is being tested by a number of tests, they are necessary to continue the
study of multifaceted aspects of non-randomness. A very important property of
P-values is that they are uniformly distributed over the unit interval when the
tested null hypothesis is correct. Thus, about 10 P-values should be expected
in the interval (0, 0.01) if the true hypothesis is being tested 1, 000 times.

In a simplified description, in the AES evaluation experiment each algorithm
generated a long string (about 220 bits) stemming from the data type and the
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keysize Altogether 300 different data sequences were generated by each algo-
rithm under combinations of data type and keysizes. Each of these sequences
was subject to a randomness test from the suite resulting in a pass/fail decision.
This decision was based on comparison of the P-value and a significance level
which was chosen as 0.01. The P-values obtained were tested for uniformity.
The sum of overall number of pass/fail decisions over all sequences was used as
the statistic to judge randomness according to the particular test: if this sum
is below a certain bound, the data set is deemed to have passed this statistical
test. Thus, each algorithm under a particular test of randomness generated
three hundred decisions with regard to agreement of the output and the ran-
domness hypothesis. Both the sum of pass/fail decisions and the characteristic
of uniformity (based on χ2-test discussed in section 1.2) were used in the final
assessment. If none of the P-values fell below 0.0001, the sample was believed
to have satisfied the criterion for being random from the point of view of the
given statistical test.

This procedure has been criticized (Murphy, 2000) from several perspectives.
According to principles of statistical inference it is preferable to have one sum-
mary statistic on the basis of a long sequence rather than a number of such
statistics obtained from shorter subsequences. But testing of encryption algo-
rithms is not a purely statistical exercise. The validation of uniform P-values
does not enter into the calculation of the power of a particular test, yet it can
be seriously recommended from a practical point of view. The whole problem of
testing randomness is not as unambiguous as the parametric hypothesis testing
problems of classical mathematical statistics.

The same common sense approach led to concatenation of cipherblocks de-
rived from random keys and different plaintexts. Murphy (2000) compares this
process to interleaving or decimating an underlying message, so that either some
signal is removed or some noise is added. Exploration and validation of vari-
ous transmission regimes may be a more apt comparison. Besides, from the
cryptographic point of view, the entropy of the concatenated text is larger than
that of the original sequence. The concept of randomization in statistical de-
sign theory presents a similar idea. Randomized designs do not lead to better
performance of statistical procedures if the postulated model is correct. How-
ever, they provide a commonly recommended safeguard against violations of the
model assumptions.

Equally misguided seem to be arguments in favor of tests which are invari-
ant to data transformations. In the statistical inference context this principle
is violated by virtually all proper Bayes procedures. In AES testing context
symmetrization over all data permutations is unpractical if not impossible. The
use of random plaintext/random 128-bit key data type employed in the prelim-
inary testing of AES candidates resulted in a mere permutation of the plaintext
blocks. This data category was abandoned at later stages.

The concept of admissibility of tests (cf. Rukhin, 1995) was not very helpful
when testing randomness. Indeed, practical considerations led to inclusion in the
suite not only the frequency (monobit or balance) test, but also the frequency
test within a block. From the theoretical point of view the latter is superfluous,
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from the pragmatic perspective it is a useful check-up.

1.2 P-values, one-sided alternatives versus two-sided al-
ternatives and χ

2-tests

One of the principal difficulties of studying tests of randomness in statistical hy-
pothesis formulation is that the null hypothesis, according to which the observed
bits represent independent Bernoulli random variables with the probability of
success 1/2, is typically false. Indeed, this is certainly the case in the previ-
ous example of block ciphers, and more generally for all pseudorandom number
generators which are based on recursive formulas. In view of this fact, one may
expect only a measure of randomness to be attested to by a given string.

To explain, we recall the basic definitions of the classical hypothesis testing
which traditionally involve the so-called parameter space Θ. This set indexes
all possible probability distributions of the observed data. A subset Θ0 of Θ
corresponding to special parametric values of interest is the null hypothesis
H0 : θ ∈ Θ0. In many problems one can specify the alternative hypothesis
H1 : θ ∈ Θ1, often taking by the default Θ1 = Θ−Θ0. However this specification
is not straightforward and this is the case of randomness testing. For example,
if Θ is formed by real numbers and the null hypothesis specifies a particular
probability distribution for the data, the alternative could be all probability
distributions different from that one, or perhaps all probability distributions
which are stochastically larger or smaller. (Think of the life-time distribution
of a device, or of the distribution of defective items in a lot.) What if elements
of Θ are vectors or even more complicated objects?

In any case, assume that the particular alternative hypothesis leads to re-
jection of the null hypothesis for large values of a test statistic T , say when
T > T0. How can one find the cut-off constant T0? The traditional (but some-
what dated) approach is to specify a significance level α (a smallish probability,
like 0.01 or 0.05) so that under H0 the probability of its false rejection is α (or
does not exceed α.) Then the probability of the event T > T0 evaluated under
the alternative represents the chance of the correct rejection and is called the
power of the test.

A body of classical statistical literature deals with the problem of finding
tests of a given significance level which have the largest power. To accomplish
that typically a distribution from the alternative is to be fixed. An additional
difficulty of the randomness hypothesis is that its amorphous alternative is enor-
mous and cannot be fully described by a sensible finite-dimensional parameter
set Θ1.

A more modern approach (implemented in almost all statistical software
packages) suggests that the main characteristic of a test rejecting the null hy-
pothesis for large values of a statistic T , is the empirical significance level, i.e.,
the probability of the random variable T exceeding its observed value T (obs)
evaluated under the null hypothesis, P (T > Tn(obs)|H0). One of the immediate
benefits of this concept, called the P-value, is that the classical test of level α
obtains if the null hypothesis is rejected when the P-value is smaller that α.
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The power function of a classical test can be expressed in terms of the P-value,
but it involves calculation for θ ∈ Θ1.

Since we believe that the P-value (not the significance level and not the
power) is the most important practical characteristic of these procedures, each
test in the suite results in such a value, and the collection of P -values from
all the tests are consolidated into a vector reported to the consumer. If the
distributions of two test statistics under the randomness hypothesis coincide,
we consider them to be equivalent as the P-values are the same for both of
these statistics.

Let n be the length of the string under testing. Each of tests in the suite
is based on its statistic T = Tn which, under the randomness assumption, has
a desirably continuous distribution function G(t) = Gn(t) = P (T ≤ t) whose
tail probabilities can be numerically evaluated. If a one-sided alternative corre-
sponds to distributions of T which are stochastically larger than the distribution
of T under the null hypothesis, then the P-value is 1−G(T (obs)). Its large val-
ues are indicative of the fact that the null hypothesis is false, i.e., they support
the alternative hypothesis.

For example, in the classical goodness-of-fit test, T is the chi-squared statis-
tic, and H0 postulates the probabilities of a multinomial distribution as calcu-
lated from the randomness condition. As discussed later, the P-value can be
obtained from the incomplete gamma-function, and its small values lead one
to believe in the falsity of the null hypothesis. This type of statistic is com-
mon in the suite. On the other hand, statistics distributed as a mixture of
chi-squared distributions with different degrees of freedom were deemed to be
too inconvenient to work with.

For some tests the alternative to our randomness hypothesis may not nec-
essarily be restricted to distributions of T which are stochastically larger (or
smaller) than the distribution of T evaluated under this hypothesis. Then the
two-sided alternatives can be more appropriate with the validity of the null hy-
pothesis being in doubt for small values of min[G(T (obs)), 1 − G(T (obs))]. An
interpretation of P-values in this case is as a “degree of agreement” between the
statistic and its “typical” value measured by the median T̂ of its distribution
(see Gibbons and Pratt, 1975, Rukhin, 2000). Section 2.2 gives an example.

When G is a discrete distribution and the alternative is one-sided, the P-
value with the continuity correction is defined as 1

2P (T = T (obs)) + P (T >
T (obs)). Under the randomness hypothesis, these P-values have an approximate
uniform distribution on the interval (0, 1) (exactly uniform in the continuous
case.) This can be tested, for example, by the classical Kolmogorov-Smirnov
test.

To achieve P-values with a uniform distribution on the interval (0, 1), when
a discrete-valued statistic is used, the original string of length n = NM is
partitioned into N substrings each of length M . For each of these substrings
the frequencies, ν0, ν1, . . . , νK , of values of the corresponding statistic within
each of K + 1 chosen classes, ν0 + ν1 + . . . + νK = N , are evaluated. The
theoretical probabilities π0, π1, . . . , πK of these classes are determined from the
( distribution of the test statistic.
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The frequencies are aggregated by the χ2-statistic,

χ2 =
K
∑

0

(νi − Nπi)
2

Nπi
,

which under the randomness hypothesis has an approximate χ2-distribution
with K degrees of freedom. The reported P-value cab be written as the incom-
plete gamma function.

This example (in which the exact distribution of T is a complicated sum of
multinomial probabilities) demonstrates another difficulty of our testing prob-
lem. The exact distribution of T is usually difficult to find or it is too involved
from the practical point of view. However the approximate (limiting as n → ∞)
distribution may be (more) tractable and available. By replacing Gn by this
distribution one obtains approximate P-values. For insufficiently large n, these
may lack accuracy when compared to the exact probabilities.

2 What have we learned: statistical tests which
work well and some which do not

This section illustrates the concepts discussed in section 1 by using some basic
tests in the suite.

2.1 Tests based on the properties of a random walk

Denote by ǫk, k = 1, 2, . . . , n the underlying series of bits taking values 0 and 1
which is to be tested for randomness. In many situations it is more convenient
to deal with the sequence Xk = 2ǫk − 1, k = 1, 2, . . . , n, with Xk taking values
+1 or −1.

Quite a few statistical tests can be derived from the well-known limit theo-
rems for the random walk, Sn = X1 + · · ·+Xn. Under the randomness hypoth-
esis, (Sn + n)/2 has the binomial distribution with parameters n and p = 1/2,
which is not convenient to use when say, n ≥ 200. However the classical Central
Limit Theorem, according to which

lim
n→∞

P

(

Sn√
n
≤ z

)

= Φ(z) =
1√
2π

∫ z

−∞

e−u2/2 du,

provides a useful approximation, which forms the foundation for the most basic
monobit test of the null hypothesis that in a sequence of independent random
variables X ’s or ǫ’s the probability of ones is 1/2.

More tests of randomness can be derived on the distribution of the maxi-
mum of the absolute values of the partial sums, max1≤k≤n |Sk|, and from the
distribution of the number of visits within an excursion of the random walk
Sk to a certain state. However, not all tests based on the probabilistic proper-
ties of random walk are equally suitable for randomness testing. For example,
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the limiting distribution of the proportion of time Un that the sums Sk are
non-negative, leads to a fairly weak test.

2.2 Discrete Fourier transform (spectral) test

The spectral test which appeared in the suite turned out to be troublesome.
As it happened, it was not properly investigated, which resulted in a wrong
statistic and a faulty constant. This fact was duly noticed by the cryptographic
community (Kim, Umeno and Hasegawa, 2003, Killman, Schüth, Thumser and
Uludag, 2004, Hamano, 2005). Now the original version is replaced by the
following modification.

Let Xk = ±1, k = 1, . . . , M , be a sequence of random bits. Denote

fj =
M
∑

k=1

Xk exp
{2π(k − 1)ji

M

}

,

j = 0, . . . , M/2 − 1. Then Efj = 0, Efj f̄j′ = δjj′M. Here z̄ = a − bi is the
complex conjugate of a complex number z = a + bi. For a fixed m (i.e.,
m which does not depend on M) the joint distribution of the complex vec-
tors M−1/2(f1, . . . , fm) for large M is approximately the multivariate com-
plex normal distribution. It follows that under the randomness hypothesis,
W = 2

∑m
k=1 mod2

k/M, mod2
k = fkf̄k, has an approximate χ2-distribution with

2m degrees of freedom.
These facts lead to the following procedure. Partition a string of length n,

such that n = MN into N substrings, each of length M . For each substring
evaluate mod2

k, k = 1, . . . , m (as in the original version of this test but for a much
smaller m than M/2 − 1). For each j = 1, . . . , N , calculate the statistic W =
Wj = 2

∑m
k=1 mod2

k/M . Reject the randomness hypothesis if the χ2 goodness-
of-fit test does not accept the χ2-distribution with 2m degrees of freedom.

More exactly, choose a number K + 1 of disjoint intervals (classes), evaluate
the theoretical probabilities πi, i = 0, 1, . . . , K of the intervals according to this
distribution, and form the familiar χ2-statistic, χ2 =

∑K
i=0(νi − Nπi)

2/(Nπi)
with νi denoting empirical frequencies of W -values in i-th interval, ν0+· · ·+νK =
N . The P-value can be given through the incomplete gamma-function,

An alternative way to calculate the P-value is to follow a suggestion in
section 1.2. Namely, determine the median, Ŵ , of the χ2-distribution with 2m
degrees of freedom, Q(m, 0.5Ŵ) = 0.5. Then 0.5Ŵ ≈ m − 1/3. The P-value
corresponding to j-th substring is

P-value =

{

Q(m, 0.5Wj) + 1 − Q(m, Ŵ − 0.5Wj) Wj ≥ Ŵ ,

1 − Q(m, 0.5Wj) + Q(m, Ŵ − 0.5Wj) Wj < Ŵ .

2.3 Non-overlapping and overlapping template matchings

Most conventional pseudo random number generators, such as the linear con-
gruential generators and lagged-Fibonnaci generators used in IMSL, C++, and
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other packages, tend to show patterning due to their deterministic recursive al-
gorithms. Because of this patterning, it is natural to investigate statistical tests
based on the occurrences of words (patterns or templates).

We start here with the tests which utilize the observed numbers of words or
the frequency of a given word in a sequence of length M . Let ı = (i1, . . . , im)
be a given word (template or pattern, i.e. a fixed sequence of zeros and ones)
of length m.

An important role belongs to the set {j, 1 ≤ j ≤ m, ij+k = ik, k = 1, . . . , m−
j}, which is the set of periods of ı. For example, when ı corresponds to a run of
m ones, {1, . . . , m − 1} is the set of all periods. For aperiodic words ı, this set
is empty. Such words cannot be written as ℓℓ . . . ℓℓ′ for a pattern ℓ shorter than
ı with ℓ′ denoting a prefix of ℓ. In this situation occurrences of ı in the string
are necessarily non-overlapping.

Denote by W = W (m, M) the number of occurrences of the given aperiodic
pattern. If (M − m + 1)/2m = λ, then EW = (M − m + 1)2−m = λ. When
both M and m tend to infinity, W has a Poisson limiting distribution with the
parameter λ, i.e., P (W = k) → e−λλk/k! k = 0, 1, . . . (Barbour, Holst and
Janson, 1992.) When the length m is fixed, the limiting distribution of stan-
dardized statistic W is normal. Each of these facts can be used for randomness
testing.

This statistic is defined also for periodic patterns, but the accuracy of Pois-
son approximation is good only when ı does not have small periods. A test of
randomness can be based on the number of possibly overlapping occurrences of
templates in the string. If U = U(m, M) is this number for a periodic word
of length m then the asymptotic distribution of U is the compound Poisson
distribution(the so-called Polya-Aeppli law). The probabilities of this distri-
bution can be expressed in terms of confluent hypergeometric function. So to
implement the test of randomness based on overlapping patterns, partition the
string into N substrings and evaluate the empirical frequencies of occurrences
of aperiodic or periodic patterns within each substring of length M comparing
them to the theoretical probabilities via the χ2-statistic.

Notice that M must be sufficiently large for validity of this test. For example,
when M = 1032 and ı is a run of m = 9 ones, so that λ = 1.9980468750, the
comparison of Polya-Aeppli probabilities and the exact probabilities (due to K.
Hamano) is given in the Table 1.

Table 1. The exact probabilities and the Polya-Aeppli law

probabilities when M = 1032 and m = 9

exact probabilities Pòlya-Aeppli probabilities
P (U = 0) 0.367879 0.364091
P (U = 1) 0.183940 0.185659
P (U = 2) 0.137955 0.139381
P (U = 3) 0.099634 0.100571
P (U = 4) 0.069935 0.070431
P (U = 5) 0.140657 0.139865

.
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3 What we do not know yet: tests based on
patterns, periodic or not

For a given set of words (patterns), it is of interest to determine the probability of
the prescribed number of (overlapping) occurrences of these patterns in the text.
This problem appears in different areas of information theory such as source
coding and code synchronization. It is also important in molecular biology, in
DNA analysis, and for gene recognition.

It is convenient now to consider a random text formed by realizations of
letters chosen from a finite (not necessarily binary) alphabet. This setting can
be used for a binary sequence if its substrings of a given length p represent the
new letters, so that there are q = 2p such letters. Then the length n of q-nary
sequence is related to the length n′ of the original binary string by the formula,
n = n′/p. This extension opens the possibility of choosing q in an optimal way.

To find words with prescribed frequencies one can use asymptotically nor-
mal estimates of word probabilities or the exact distributions obtained from
generating functions (see, for example, Szpankowski, 2001). These results sug-
gest that the probability for a given word ı to appear exactly r times in the
string of length n can be approximated by the Poisson probability of the value
r, when the Poisson parameter is nP (ı). Thus, the distribution of the number
of words with given r can be expected approximately equal to that of the sum
of Bernoulli random variables whose success probability is this Poisson proba-
bility. However, the more detailed structure of this distribution, in particular,
the covariance of several such random variables, needed in the study of large
sample efficiency, is less intuitive.

The approximate Poisson distribution for the number of missing words (r =
0) is alluded to in Marsaglia and Zaman (1993). It forms the basis of the so-
called OPSO test of randomness in the Diehard Battery (Marsaglia 1996). This
test takes non-overlapping substrings formed by zeros and ones of length p = 10
to represent the letters of the new alphabet, so that there are q = 210 new
letters, which in general is not the optimal choice. In the OPSO test one counts
the number of two-letter patterns (the original substrings of length 2p = 20)
which never occur. We consider the case of arbitrary m in the next section.

3.1 Tests of randomness based on the number of missing
words

Let ǫ1, . . . , ǫn denote a sequence of independent discrete random variables each
taking values in the finite set Q, say, Q = {1, . . . , q}, P (ǫi = k) = pk, k =
1, . . . , q. Thus, the probability of the word ı = (i1 . . . im) is P (ı) = pi1 · · · pim

.
The situation when pk ≡ q−1 corresponds to the randomness hypothesis.

To determine efficient tests for randomness, we look at the alternative distri-
butions of the alphabet letters which are close to the uniform in the sense that
pk = q−1 + q−3/2ηk, k = 1, . . . , q,

∑q
k=1 ηk = 0. We assume that as n → ∞,

q → ∞ so that n/qm → λ and for a positive κ,
∑

k η2
k/q → κ. Then nP (ı) → λ.
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The first object of interest is the probability πı(n) that a fixed pattern ı
is missing in the string of length n. To find this probability one can use the
correlation polynomial of two patterns which was introduced by Guibas and
Odlyzko (1981). It plays an important role in the study of the distribution of
their frequencies.

For a complex z, let Fı(z) =
∑

n πı(n)z−n be the probability generating
function. Then in can be expressed as a ratio of two polynomials closely related
to the correlation polynomials, and for any word ı the probability πı(n) can be
found by comparing the coefficients in the series expansions of Fı(z).

For example when m = 2,  = (i, k), i 6= k, then F(z) = z2/(pipk +(z−1)z).

With s = 1/2+
√

1/4 − pipk, t = 1/2−
√

1/4 − pipk, π = (sn+1−tn+1)/(s−t).
These formulas lead to very accurate answers for the expected value and the
variance. For example when n = 221, q = 210 (so that λ = 2),

π(i,i) = 0.13559935200020, π(i,k) = 0.13533502510527.

The asymptotic approximation for the probabilities πt
(n) for a word  of

length m and of period t is πt
(n) ≈ e−λ(1+λq−t). For aperiodic words, π∞

 (n) ∼
e−λ(1−(2m−1)λ/(2qm)+(m−1)/qm). To get the formula for the expected value
of the number of missing m-words, X0 let Nt = Nt(m), t = 1, . . . , m − 1,∞,
denote the total number of words of the period t (t = ∞ corresponds to aperiodic
words). Then

∑

Nt = Nm, and as q → ∞ for t = 1, . . . , m − 1, Nt ∼ qt, N∞ ∼
qm. One gets

EX0 =
∑

t

Ntπ
t
(n) ≈ e−λqm + e−λ

[

m − 1 − λ

2

]

.

In the example when m = 2, n = 221, q = 210, the exact value of the mean
is EX0 = 141909.3299555, and the approximate formula gives 141909.3299551.
The formula for the variance can be obtained from the probabilities π00

ı (n) =
P (words ı and  are missing) which can be found from the probability generat-
ing function technique. See Rukhin (2001, 2002) for details.

After the number X0 of missing two letter words in the string of length n
has been determined, one evaluates the ratio, (X0 − EX0)/

√

V ar(X0), which
leads to the P-value obtained from the standard normal distribution.

3.2 Testing randomness via words with a given frequency

More powerful tests can be derived by using the observed numbers of words
which appear in a random text a prescribed number of times (i.e. which are
missing, appear exactly once, exactly twice, etc.) In practice these statistics are
easier to evaluate than the empirical distribution of occurrences of all m-words.

It turns out that such tests can be obtained by techniques of the previous
section which lead to the formula for the expected value of the number of m-
words, which occur exactly r times in a random string of length n, Xr = Xr

n, A
surprising fact is that the asymptotic behavior of the expected value and of the
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covariance matrix is the same for overlapping and non-overlapping occurrences,
i.e., when the word occurrences are counted in the non-overlapping m-blocks.
Therefore, the form of the following optimal test coincides with that in Kolchin,
Sevastyanov and Chistyakov (1978) who give the formulas for the first two mo-
ments of the joint distribution of the number of words appearing a prescribed
number of times when the frequencies of these words are independent.

To derive the optimal test of the null hypothesis H0 : ηi ≡ 0, we look at the
class of linear test statistics of the form S =

∑R
r=0 wr(X

r − EXr) for a fixed
positive integer R. The (Pitman) efficiency of this statistic can be obtained
from the fact that S is asymptotically normal both under the null hypothesis
and the alternative H1 : κ > 0. This efficiency is determined by the normalized
distance between the means under the null hypothesis and under the alternative,
divided by the standard deviation (which is common to the null hypothesis and
the alternative). This test is asymptotically optimal not only within the class
of linear statistics, but in the class of all functions of X0, . . . , XR.

The following table for R = 0, . . . , 9, gives the value of λ = λ⋆, which
maximizes the efficiency and the corresponding optimal weights w̃ = w/

∑

wr

normalized so that their sum is equal to one.

Table 2. Optimal weights and the optimal λ⋆

R λ⋆ w̃
0 3.59 1
1 4.77 [0.62, 0.38]
2 5.89 [0.47, 0.33, 0.20]
3 6.98 [0.39, 0.29, 0.20, 0.14]
4 8.06 [0.33, 0.25, 0.19, 0.14, 0.09]
5 9.13 [0.29, 0.23, 0.18, 0.14, 0.09, 0.07]
6 10.17 [0.25, 0.21, 0.18, 0.14, 0.09, 0.07, 0.06]
7 11.21 [0.23, 0.19, 0.16, 0.14, 0.09, 0.07, 0.06, 0.05]
8 12.24 [0.21, 0.18, 0.16, 0.14, 0.09, 0.07, 0.06, 0.05, 0.04]
9 13.26 [0.19, 0.17, 0.16, 0.14, 0.09, 0.07, 0.06, 0.05, 0.04, 0.03]

To implement this test on the basis of a string of binary bits for a fixed R,
as discussed in the beginning of this section, choose a positive integer p, such
that n ≈ 2mpλ⋆, and take all substrings of length p formed by zeros and ones
to represent the letters of the new alphabet of the size q = 2p. The numbers
Xr of m-letter patterns (the original non-overlapping consecutive substrings of
length 2m), which occurred r times with the weights from the table lead to the
asymptotically optimal test. In particular, the most efficient test based on the
number of missing words m = 2, R = 0 arises when λ⋆ = 3.594.., which means
that the best relationship between q and n, is n ≈ 3.6q2 Extensions of these
results to Markov dependent alternatives are in Rukhin (2006).
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4 What are the most important open problems:
data compression and randomness testing

It is desirable to develop tests based on patterns suggested by the data them-
selves. A powerful heuristic idea is that random sequences are those that cannot
be compressed or those that are most complex. However its practical implemen-
tation is limited by scarcity of relevant compression code based statistics whose
(approximate) distributions can be evaluated.

4.1 Linear complexity for testing randomness

Here we look at linear complexity which is related to one of the main compo-
nents of many keystream generators, namely, Linear Feedback Shift Registers
(LFSR). Such a register consists of L delay elements each having one input and
one output. If the initial state of LFSR is (ǫL−1, . . . , ǫ1, ǫ0), then the output
sequence, (ǫL, ǫL+1, . . .), satisfies the following recurrent formula for j ≥ L

ǫj = (c1ǫj−1 + c2ǫj−2 + · · · + cLǫj−L) mod 2.

Here c1, . . . , cL are coefficients of the so-called connection polynomial corre-
sponding to a given LFSR. The linear complexity L = Ln of a given sequence
ǫ1, . . . , ǫn, is defined as the length of the shortest LFSR that generates it as first
n terms. The possibility of using the linear complexity characteristic for testing
randomness is based on the Berlekamp-Massey algorithm, which provides an
efficient way to evaluate the connection polynomial for finite strings.

When the binary n-sequence is truly random, the formulas for the mean,
µn = ELn, and the variance are known. However, the asymptotic distribution as
such does not even exist; one has to treat the cases, n even, and n odd, separately
with two different limiting distributions. Both of these distributions can be
conjoined in a discrete distribution obtained via a mixture of two geometric
random variables (one of them taking only negative values).

The monograph of Rueppel (1986) gives the distribution of the random vari-
able Ln, the linear complexity of a random binary string, which can be used to
show that

Tn = (−1)n[Ln − ξn] +
2

9
, ξn =

n

2
+

4 + rn

18
,

can be used for testing randomness. The sequence Tn converges in distribution
to the random variable T whose distribution is skewed to the right. While
P (T = 0) = 1/2, P (T = k) = 2−2k, for k = 1, 2, . . . , and P (T = k) =
2−2|k|−1, k = −1,−2, . . . , which provide easy formulas for the P-values.

In view of the discrete nature of this distribution one can use the strategy
described in section 1.2 for a partitioned string. A more powerful test which ef-
ficiently uses the available data was suggested by Hamano, Sato and Yamamoto
(2009). It is based on the statistic

∑ |j/2−Lj|, which can be interpreted as the
sum of areas of triangles formed by vertexes (j,Lj), (j+1,Lj+1), j = 0, 1, 2, · · · ,
around the line Lj = j/2.
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4.2 Tests based on data compression

The original suite attempted to develop a randomness test based on the Lempel-
Ziv algorithm (1977) of data compression via parsing of the text. Let Wn

represent the number of words in the parsing of a binary random sequence of
length n according to this algorithm. Aldous and Shields (1988) have shown
that EWn/(n/ log2 n) → 1, so that expected compression can be asymptotically
approximated by n/ log2 n. Moreover,

P

(

Wn − EWn
√

V ar(Wn)
≤ w

)

→ Φ(w).

The behavior of V ar(Wn) was elucidated by Kirschenhofer, Prodinger, and Sz-
pankowski (1994) who proved that V ar(Wn) ∼ (n[C + δ(log2 n)])/ log3

2 n, where
C = 0.26600 (to five significant places) and δ(·) is a slowly varying continuous
function with mean zero, |δ(·)| < 10−6.

One of the tests in the original version of the suite compressed the sequence
using the Lempel-Ziv algorithm. If the reduction is statistically significant when
compared to the expected result, one can declare the sequence to be nonrandom.

It was expected that the ratio (W − n/ log2 n)/
√

0.266n/ log3
2 n, where W is

the number of words obtained, would provide the P-value corresponding to
the two-sided alternative. Unfortunately, this test failed because the normal
approximation was too poor, i.e., the asymptotic formulas are not accurate
enough for values of n of the magnitude encountered in testing random number
generators.

More practical turned out to be the so-called “universal” test introduced by
Maurer (1992). The test requires a long (of the order 10 · 2L + 1000 · 2L with
6 ≤ L ≤ 16) sequence of bits which it divides into two stretches of L-bit blocks:
D, D ≥ 10 · 2L, initialization blocks and K, K ≈ 1000 · 2L test blocks. The
test looks back through the entire sequence while inspecting the test segment of
L-bit blocks, checking for the nearest previous exact match and recording the
distance (in number of blocks) to that previous match. The algorithm computes
the logarithm of all such distances for all the L-bit templates in the test segment
(giving effectively the number of digits in the binary expansion of each distance),
and averages over all the expansion lengths by the number of test blocks K to
get the test statistic Fn. A P-value is obtained from the normal error function
based on the standardized version of the statistic, with the test statistic’s mean
EFn equal to that of log2 G, where G is a geometric random variable with the
parameter 1 − 2−L.

The difficult part is determination of the variance V ar(Fn). There are several
versions of empirical approximate formulas, V ar(Fn) = c(L, K)V ar(log2 G)/K,
where c(L, K) represents the factor which takes into account dependent nature
of the occurrences of templates, The latest of the approximations belonging
to Coron and Naccache (1998) has the form c(L, K) = 0.7 − 0.8/L + (1.6 +
12.8/L)K−/L. However, these authors report that “the inaccuracy due to [this
approximation] can make the test to be 2.67 times more permissive than what
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is theoretically admitted.”
The prospects for better approximations, in particular for the exact variances

V ar(Wn) or V ar(Fn) do not look very good. In view of this fact, it may
be advisable to test the randomness hypothesis by verifying normality of the
observed values Fn assuming that the variance is unknown. This can be done
via a classical statistical technique, namely the t-test. The original sequence
must be partitioned in a number N (say N ≤ 20) of substrings on each of
which the value of the universal test statistic is evaluated (for the same value
of parameters K, L and D). The sample variance is calculated, and the P-value
is obtained from the t-distribution with N − 1 degrees of freedom.

The most interesting randomness test would be based on Kolmogorov’s def-
inition of complexity which is the length of the shortest (binary) computer pro-
gram that describes the string. One of the universal Turing machines is supposed
to represent the computer which could use this description to exhibit this string
after a finite amount of computation. As was argued, the random sequences
are the most complex ones, so if Kolmogorov’s complexity were computable, a
randomness test would reject the null hypothesis for its small values. Unfor-
tunately, this complexity characteristic is not computable (Cover and Thomas,
1991), and there is no hope for a test which is directly based on it.

Pursuing the idea of using data compression codes as randomness testing
statistics, let Q be a finite alphabet of size q. A data compression method
consists of a collection of mappings φn of Qn, n = 1, 2, . . . into a set of all finite
binary sequences, such that for ı,  ∈ Qn, ı 6= , one has φn(ı) 6= φn(). This
means that a message of any length n can be both compressed and decoded.

For a given compression code, the randomness hypothesis is accepted on
the basis of the string ǫ1, . . . , ǫn if the length Tn of φn(ǫ1, . . . , ǫn) is large
enough. Ryabko and Monarev (2005) show that the choice of the cut-off con-
stant T0 = n log q + log α − 1 leads to a test of significance level α. A code is
universal if for any ergodic stationary source Γ, the ratio Tn/n converges with
probability one to the entropy of Γ. This entropy equals to log q if the ran-
domness hypothesis is true, and it is smaller than log q under any alternative
that can be modeled by an ergodic stationary process. For universal codes the
power of the corresponding test tends to one as n increases. However, finding
non-trivial compression codes with known distributions of the codewords length
(so that P-value can be evaluated) is quite difficult.

5 What are the prospects for progress: Con-
cluding remarks

To sum up, there are major challenges in the area of empirical randomness test-
ing. It may be a bit surprising that so many available procedures are based
on the one hundred years old χ2-test. Since this area is so important, one can
expect more stringent methods based on new ideas. In particular, a study of
overlapping spatial patterns is of great interest, as it may lead to such proce-
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dures.
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